Aromatic compounds, Arly Halides (Haloarenes)

EXERCISES

ELEMENTARY

Q. 1 (3)

$6 \pi \mathrm{e}$ are present in compound
Q. 2 (2) 10.5 gram carbon Per hydrogen

$$
\mathrm{C}=\frac{10.5}{12} \Rightarrow \frac{7}{8}
$$

$$
\mathrm{H}=\frac{1}{1}=1
$$

$$
\mathrm{C}_{7} \mathrm{H}_{8}
$$

Q. 3 (3)
Q. 4 (3)

Benzylic carbon has 2 hydrogen ethyl benzene.
Q. 5 (1)

Q. 6 (2)

Rate of electrophilic substitution reaction \propto Stability of arenium ion.
Q. 7 (3)

[Stable σ complex due to Resonance]

Isotopic effect is not operate because removal of proton is not R.D.S So isotopic benzen having equal rate for E.S.R. with respect to benzen
$\mathrm{K}_{\mathrm{C}_{6} \mathrm{H}_{6}}=\mathrm{K}_{\mathrm{C}_{6} \mathrm{D}_{6}}=\mathrm{K}_{\mathrm{C}_{6} \mathrm{~T}_{6}}$

Q. 8 (4)

intermediate benzenium cation.
Q. 9 (4)
Q. 10 (4)
CH_{3} group in toluene is o, p-position direction activator.

Q. 11 (1)

 reaction. (formylating agent).

$$
\text { Q. } 12 \quad(2)
$$

Q. 13 (4)

Aromatic and aliphatic alcohols can be distinguished by FeCl_{3} test.
Q. 15 (1)

Benzaldehyde and formaldehyde give Cannizzaro reaction.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (B)
 thus most stable.
Q. 2 (2)

(Quasi Aromatic Compound)
Q. 3 (2)

(Quasi Aromatic Compound)
Q. 4 (A)

Q. 5 (D)

Q. 6 (3)

Q. 7 (3) Benzoic acid \& acetone
(4) Phenol \& acetone
(4)

Q. 12 (4)

Q. 13 (1)

Q. 14 (B)

Q. 15 (2)

Q. 16 (1)

Q. 17 (1)

Rate of electrophilic substitution \propto Stability of arenium ion.
Q. 18 (3) Decreasing reactivity order for bromination (E.S.R.)

Q. 19 (B)
$-\mathrm{CCl}_{3},-\mathrm{NO}_{2},-\mathrm{CHO} \longrightarrow$ Meta directing group
$-\mathrm{O}^{\ominus} \longrightarrow$ ortho / Para directing
Q. 20 (4)

(i)

(ii)

(iii)

(iv)
thus reactivity order towards electrophilic substitution reaction is iii > iv > i > ii
Q. 21 (1)

Electro releasing order of $\mathrm{OH}>\mathrm{CH}_{3}>\mathrm{Br}>\mathrm{NO}_{2}$.
Q. 22 (4)

2, 4, 6 Tribromophenol.
Q. 23
(3)

In alkylation of benzene polyalkylated products are formed.
Q. 24 (B)

Q. 25 (2)

Sulphonation :

Acetylation

Formylation :

Q. 26 (3)

Reactivity towards electrophile \propto Electron releasing group.
Q. 27 (1)

Reactivity towards bromination \propto Stability of arenium ion.
Q. 28 (4)

Phenyl Benzoate
Q. 29 (3)

$-\mathrm{OCH}_{3}$ is ortho-para directing
Q. 30 (4)

Q. 31 (2) In sulphonation SO_{3} is electrophile species.
Q. 32 (2)

Q. 33 (4)

In vinyl chloride lone pair of Cl atom take part in conjugation so partial double bond character between CCl bond.
Q. 34 (1)

(I)

(II)

(III)

(IV)

Increasing order of rate of reaction with $\mathrm{Br}_{2} / \mathrm{AlBr}_{3}$

$$
\mathrm{III}<\mathrm{I}<\mathrm{II}<\mathrm{IV}
$$

Q. 35 (1)

Riemen Tieman Reaction

Q. 36 (2)

Q. 37 (2)

Q. 38 (B)

Q. 39 (D)

Q. 40 (2)

(A)

(B)

(C)

(D)

Toluene will be more reactive for E.S.R.
Q. 41 (3)

Q. 42 (4)

Q. 43 (3)

Nitro benzen is least reactive for E.S.R.

Q. 44 (4)

Q. 45 (1)

This is Meta directing group

(a)

(b)

(c)

(d)

Reactivity order for E.S.R. $\longrightarrow a>b>c>d$

Q. 47 (1)

In meta xylene both CH_{3} groups increases electron density at same carbons.
Q. 48 (1)

Q. 49 (3)

$-\mathrm{CH}_{3}$ group is ortho/para directing. One product is optained.

Q. 50 (2)

$-\ddot{\mathrm{O}} \mathrm{CH}_{3}$ is ortho-para directing and more electron density at ortho/para position.
Q. 51 (3)

Correct reactivity order for E.S.R.
Q. 52 (2)

Orientation decided by more activating - OH group.
Q. 53 (1)

Orientation decided by more activating - OH group [+ M effect].
Q. 54 (1)

Q. 55 (2)

$-\mathrm{CH}_{3} \longrightarrow$ Weakly activating group
Q. 56 (C)
Q. 57
(4)

Q. 59 (2)

Because rate of $\mathrm{S}_{\mathrm{N}} 2 \mathrm{Ar}$ is $-\mathrm{F}>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}$

Q. 60 (4)

Strong - M effect is activating for ArSN^{2} group So, more reactive towards

Q. 61 (2)

Q. 62 (1)

(nucleophilic subsitution reaction)

Q. 64 (1)

Q. 65 (2)
-M of $-\mathrm{NO}_{2}$ at -Cl is best in B .
Q. 66 (C)

Q. 67 (2)

Q. 68 (3)

Q. 69 (4)

Q. 70 (1)

Q. 71 (4)

(1)

It is nucleophillic aromatic substitution reaction.
Q. 73 (4) $\mathrm{S}_{\mathrm{N}} 2 \mathrm{Ar}$ is obtained.
Q. 74 (4)
(Nucleophilic aromatic Substitution Reaction)
Q. 75 (3)

Q. 76 (1)

Q. 77 (2)

Q. 78 (2)

Q. 79 (1)
© CH_{2}
Single carbene \rightarrow two non bonding electron are present in one sp^{2} hybridized orbital.

Q. 80 (3)
(3)
$\mathrm{H}-\mathrm{C}-\mathrm{H} \quad$ Triplet carbene

Two non bonding electron are present in different orbital so triplet carbene having sp hybridized.

Q. 81 (4)

Secondary amine are not gives. Carbylamine reaction/ isocyanide test.
Q. 82 (1)

Sec. amine does not gives Hoffmann'scarbyl amine test.

Q. 84 (3)

Q. 85 (3)

Q. 86 (2)
$\mathrm{NH}_{4} \mathrm{HS}$ is selective reducing agent.
Q. 87 (4)

Q. 88 (2)

Q. 89 (2)

Q. 90 (1)

Q. 91 (4)

Amongst the following the moderately activating group is-
$\mathrm{Ph}-\mathrm{NH}_{2} \xrightarrow[\mathrm{O}^{\circ} \mathrm{C}]{\mathrm{HNO}_{2}} \mathrm{PhN}_{2} \mathrm{Cl} \xrightarrow[\mathrm{BF}_{3} / \Delta]{\mathrm{HF}} \mathrm{Ph}-\mathrm{F}$
Q. 92 (4)

Q. 93 (3)

Q. 94 (2)

Q. 95 (2)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)

Q. 2 (C)

Q. 3 (B)

Q. 4 (B)

Q. 5 (D)

Unstable σ complex

Q. 6
(A)

Q. 7 (A)

Electrophile attacks on that ring which has more +M effect.
Q. 8 (C)

$\xrightarrow{\mathrm{NO}_{2}{ }^{+}}$

Q. 9 (A)

Q. 10 (D)

Q. 11 (A)

Q. 12 (A)

Q. 13 (B)

Q. 14 (C)

Q. 15 (A)

Q. 16 (D)

Q. 17 (B)

Q. 18 (C)

Q. 19 (B)

Q. 20 (C)

Q. 21 (A)

Q. 24 (B)

Q. 25 (B)

Q. 22 (B)

Q. 23 (A)

Q. 26 (C)

More electron denisty
Q. 27 (D)

Q. 28 (B)

Q. 29 (B)
Q. 30 (C)

$$
\text { -ÖMe } \longrightarrow \text { ortho-Para directing group }
$$

Q. 31 (B)

Q. 32 (D)

$-\mathrm{OCH}_{3}$ is Ortho / Para directing or activating group.

Q.
)
ajor Product)

Q. 33 (A)

Q. 34 (B)

Q. 35 (B)

This comp is more reactive toward Nu aromatic sub reaction because F having small size and less sterical hindrence.
Q. 36 (C)

Q. 37 (B)

Q. 38 (A)

Q. 39 (D)

(B)
$\mathrm{C}^{1}-\mathrm{C}^{2}$ - is shorter because it is double bond in two of three resonance strucutre ; $\mathrm{C}_{2}-\mathrm{C}_{3}$ is a single bond in two of three resonance strucutres.

41
Q. 42 (B)

Q. 43 (D)

Q. 44 (C)

Q. 47

Phenoxide ions are so strongly activated that they undergo electrophilic aromatic substitution with CO_{2}, a weak electrophile.

[A]

Q. 48 (D)

\longrightarrow
 \longrightarrow
Q. 45 (C)

H

Q. 49 (C)

Q. 50 (A)

Q. 51 (A)

Phenol prefer coupling in Basic medium.
Q. 52 (B)

Aniline prefer coupling in acidic medium .
Q. 53 (A)

The electron-attracting - NO_{2} stabilizes ring A . of 1nitronaphthalene to oxidation, and ring B is oxidized to form 3-nitrophthalic acid. By orbital overlap, -
$\stackrel{\bullet}{\mathrm{N}} \mathrm{H}_{2}$ releases electron density, making ring A more susceptible to oxidation, and α-naphthylamine is oxidized to phthalic acid.
Q. 54 (C)

Q. 55 (D)
Q. 56 (C)

Q. 57 (B)
Q. 58

(C)

Q. 59 (A)

Q. 60 (C)

Q. 61 (A)

Q. 62 (C)
Q. 63 (B)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (ABD)
(A)

(B)

$+\mathrm{H}_{2} \uparrow \equiv \Theta 10 \pi \mathrm{e}^{-}$, aromatic
(C)

$4 \pi \mathrm{e}^{-}$, antiaromatic
(D)

$10 \pi \mathrm{e}^{-}$, aromatic

Q. 2 (ABCD)

Aromatic \rightarrow planar, cyclic , $(4 n+2) \pi e^{\ominus}$, complete conjugation
Antiaromatic \rightarrow planar, cyclic , (4n) $\pi \mathrm{e}^{\ominus}$, complete conjugation
Non aromatic- cyclic structure with non-planar geometry with any hybridization
Q. 3 (ABC)

Aromatic \rightarrow planar, cyclic , $(4 \mathrm{n}+2) \pi \mathrm{e}^{\ominus}$, complete conjugation
Q. 4 (AC)

Aromatic \rightarrow planar, cyclic, $(4 \mathrm{n}+2) \pi \mathrm{e}^{\ominus}$, complete conjugation
Q. 5 (BCD)
(A)

(B)

Resonance stabilised carbocation

(C)

Stable due to backbonding
(D) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{AgNO}_{3} \longrightarrow$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2} \stackrel{\ominus}{\mathrm{~N}} \mathrm{O}_{3}+\mathrm{AgCl} \downarrow$ Stable carbocation due to resonance.
Q. 9 (ABD)

Q. 7 (ABC)

Q. 8 (AC)

Q. 10 (AC)

Q. 11 (AB)

Q. 12 (AC)
Q. 13 (CD)
Q. 14 (ABC)

Q. 15 (ABC)
(A)

(B)

decreasing electron density in benzene ring. So attack of NO_{2}^{\oplus} at meta poistion.
Q. 16 (ABC)

(C)

,Q. 17 (AB)

Reactivity order for E.S.R.

Q. 18 (BD)

both are ortho-para directing group because increasing electron density at ortho/para position.
Q. 19 (CD)

Q. 20 (BC)

They are activating groups.
Q. 21 (ABCD)
(A)

(B)

(C)

(D)

Q. 22 (BCD)

Q. 23 (AB)

Q. 24 (CD)

Q. 25 (ABCD_
(A)

Q. 27 (ACD)

(C)

B.H.C.
(B)

Q. 26 (ABC)
(A)

(B)

(C)

Q. 29 (D)

(D)

Comprehension \# 1 (Q. No. 28 to 30)
Q. 28 (D)

Comprehension (Q. No. 31 to 33)
Q. 31 (C)
Q. 32 (C)
Q. 33 (D)
(31. to 33)

$\downarrow \mathrm{AlCl}_{3}$

(T)

$\xrightarrow[\text { (ii) } D_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{PhMgBr}}$
(W)

Comprehension \# 3 (Q. No. 34 to 36)
Q. 34 (C)
Q. 35 (B)
Q. 36 (A)
(34 to 36)

Comprehension \# 4 (Q. No. 37 to 39)
Q. 37 (C)

Q. 38 (D)
(A)

(C)

(D)

Q. 39

Comprehension \# 5 (Q. No. 40 to 42)
Q. 40 (C)
Q. 41 (B)
Q. 42 (C)
(40 to 42)

Comprehension \# 6 (Q. No. 43 to 45)
Q. 43 (B)
Q. 44 (B)
Q. 45 (C)
(43 to 45)

(H)

Comprehension \# 7 (Q. No. 46 to 48)
Q. 46 B
Q. 47 A
Q. 48 D

Sol. 46

Sol. 47

Comprehension \# 8 (Q. No. 49 to 50)
Q. 49 (D)
Q. 50 (A)

49

50

Comprehension \# 9 (Q. No. 51 to 53)
Q. 51 A
Q. 52 D
Q. 53 D

51

Comprehension \# 10 (Q. No. 54 to 57)
Q. 54 (D)
Q. 55 (B)
Q. 56 (D)
Q. 57 (B)

54

55

$56 \quad \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{BF}_{3}, \mathrm{SO}_{3}$ reagent are acid and used in Beackmann rearrangment. When OH^{\ominus} is base.

57 Migration of alkyl group or formation of carbocation is R.D.S. step. in Beckmann rearrangement.
Q. $58 \quad \mathbf{A} \longrightarrow \mathrm{r}, \mathrm{s} ; \mathbf{B} \longrightarrow \mathrm{r} ; \mathbf{C} \longrightarrow \mathrm{q}, \mathrm{s} ; \mathbf{D} \longrightarrow$ p, s
Aromatic \rightarrow planar, cyclic , $(4 n+2) \pi \mathrm{e}^{\ominus}$, complete conjugation
Antiaromatic \rightarrow planar, cyclic , (4n) $\pi \mathrm{e}^{\ominus}$, complete conjugation
Non aromatic- cyclic structure with non-planar geometry with any hybridization
Q. 59 (A) - PR, (B) - PR, (C) - PR, (D) - PS
(A) $-\mathrm{CH}_{2}-\mathrm{CH}_{3} \quad$ Ortho - Para directing and Activating group.

(C) $-\sqrt{\mathrm{N}} \mathrm{H}^{2}-\mathrm{O}$ goup or activating group
(D) $-\underset{\substack{\text { II }}}{\mathrm{S}}-\mathrm{CH}_{3} \quad$ Ortho - Para directing or deactivating group.
Q. $60 \quad(\mathrm{~A}) \rightarrow \mathrm{q}, \mathrm{r} ;(\mathrm{B}) \rightarrow \mathrm{q}, \mathrm{s} ; \quad$ (C) \rightarrow p.r; (D) $\rightarrow \mathrm{q}, \mathrm{s}$ (A) $-\mathrm{CH}=\mathrm{CHCOOH}$ is deactivating due to -I of COOH group, but o,p-directing due to stability of carbocation.
(B) $-\mathrm{CCl}_{3}$ is electron withdrawing group due to -I nature.
(C) -OH is electron donating due to +m ; $-\mathrm{NO}_{2}$ is electron withdrawing due to -m .
Q. 61 (A)- PR; (B) - PR ; (C) - P,R; (D) - P,R
(A)

Ortho / para director, Activating group
(B)

Ortho / para director, Activating group
(C)

Ortho / para director, Activating group
(D)

Ortho / para director, Activating group
Q. 62
(A) - P, R, S; (B) - R; (C) - Q,S; (D) - Q, R, S
(A)

Ortho / para director, deactivating group
(B)

Ortho / para director, activating group
(C)

Meta director, deactivating group
(D)
 Ortho-paradirector, deactivating group
Q. 63 (A)-PR, (B)-PRS, (C)-QR, (D)-PR (A)

(B)

(D)

Q. $64 \quad(\mathrm{~A}) \rightarrow \mathrm{s},(\mathrm{B}) \rightarrow \mathrm{q},(\mathrm{C}) \rightarrow \mathrm{p},(\mathrm{D}) \rightarrow \mathrm{r}$

Q. 65 (A) $-\mathrm{p}, \mathrm{q}, \mathrm{r}$; (B) - s ; (C) $-\mathrm{q}, \mathrm{r}, \mathrm{s}:$ (D) q

(B)

(C)

(D)

Q. 66 (A) - P ; B - Q ; (C) - R ; (D) - S

reactivity order of X Towards ArSN^{2}
Q. 67 (A) - Q ; (B) - P; (C) - Q; (D) - Q

(B)

(C)

(D)

Q. 68 (A) - Q,S; (B) - P,R; (C) - R; (D) - P
(A)

(B)
 Gives Libbermann nitroso test
(C)

(D)

Q. 69 (A) - q; (B) - p; (C) - s; (D) - r.
(A)

(B)

(C)

(D)

Q. 70 (A)-PQ, (B)-QS, (C)-P, (D)-R (A)

(B)

(Beckmann Rearrangement)
(C)

(D)

Q. 71 (A) - P
; (B) - P; (C) - Q; (D) - R, S
(A)

(B)

(C)

(D) $\mathrm{Ph}-\mathrm{C}-\mathrm{Ph} \underset{\mathrm{N}-\mathrm{OH}}{ } \xrightarrow{\mathrm{PCl}_{5}} \xrightarrow[\substack{\text { O }}]{\mathrm{Ph}-\mathrm{C}-\mathrm{NH}-\mathrm{Ph}}$
Q. 72 (A) - P S; (B) - P, R; (C) - P, Q; (D) - T
(A)

(B) $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{N}+\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{SnCl}_{2} / \mathrm{HCl}} \mathrm{Ph}-\mathrm{CHO}$ Stephen reduction
(C)

Q. 73
(D) $\quad \mathrm{Ph}-\mathrm{C} \equiv \mathrm{N} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}} \mathrm{Ph}-\mathrm{COOH}$

$$
\mathbf{A} \rightarrow \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{Q} ; \mathbf{C} \rightarrow \mathbf{P} ; \mathbf{D} \rightarrow \mathbf{R}
$$

Q. $74 \quad \mathrm{~A} \rightarrow \mathbf{P}, \mathbf{R} ; \mathbf{B} \rightarrow \mathbf{Q}, \mathbf{R} ; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{R} ; \mathbf{D} \rightarrow \mathbf{Q}, \mathbf{S}$
$-\mathrm{CH}_{3} \longrightarrow \mathrm{o}, \mathrm{p}$ activating group
$-\mathrm{OH} \longrightarrow \mathrm{o}, \mathrm{p}$ activating group
$-\mathrm{Cl} \longrightarrow \mathrm{o}, \mathrm{p}$ deactivating group
$-\mathrm{NO}_{2} \longrightarrow \mathrm{~m}$, deactivating
Q. $75 \quad \mathrm{~A} \rightarrow \mathbf{Q} ; \mathbf{B} \rightarrow \mathbf{P} ; \mathbf{C} \rightarrow \mathbf{S} ; \mathbf{D} \rightarrow \mathbf{R}$
$\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CO} \overline{\mathrm{O}} \mathrm{Na} \xrightarrow[\mathrm{NaOH}]{+} \mathrm{CaO} \mathrm{Ph}-\mathrm{CH}_{3}$ Toluene
$\mathrm{PhCO} \overline{\mathrm{O}} \mathrm{Na} \xrightarrow[\mathrm{NaOH}]{+} \mathrm{CaO} \mathrm{Ph}-\mathrm{H}$ Benzene
$\mathrm{Ph}-\mathrm{Cl} \xrightarrow[\text { Dry ether }]{2 \mathrm{Na}} \mathrm{Ph}-\mathrm{Ph}$ Diphenyl
$\mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{O}_{3}, \mathrm{Zn}}{\underset{\mathrm{CHO}}{\mathrm{CH}}}_{\mathrm{CHO}}$ Glyoxal

NUMERICAL VALUE BASED

Q. 5 [94]
Q. 2 [2]

Q. 3
[75]

$\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}(\mathrm{Y})$
Molecular weight of $\mathrm{Y}=75$
Q. 4 [3]

o, m, p isomer of toluidines will give toluene with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ followed by $\mathrm{H}_{3} \mathrm{PO}_{2}$ treatment.

molecular weight of $Z=94$
Q. 6

(Q)

(R) (S)

Molecular weight $=12 \times 6+6=78$

This is example of Ulman reaction which gives product like Wurtz reaction.
Q.6(B)

[Styrene]

Q. 7 (A)

Q. 8 (A)

JEE-MAINS

PREVIOUS YEAR'S

Q. 1
 (2)

In first step ketonic group is reduced by Clemenssen reduction, in second step aromatisation takes place.
Q. 2 (2)
Q. 3 (4)
Q. 4 (D)
Q. 5
(1)
P is

Q. 6
 (2)

(A)

Sandmayer reaction
(B)

Gattermann reaction
(C)

Fittig reaction
(D) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{\mathrm{Na} / \text { Dry ether }}$ Wurtz reaction
Q. 7 (1)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \xrightarrow{\mathrm{Sn}+\mathrm{HCl}} " \mathrm{~A} " \xrightarrow[\mathrm{H}^{\oplus}]{\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{~N}_{2} \mathrm{Cl}}} \underset{\begin{array}{l}
\text { Yellow } \\
\text { coloured } \\
\text { compound) }
\end{array}}{\mathrm{P}}
$$

Q. 8 (4)
Q. 9 (1)
Q. 10 (2)
Q. 11 (1)

JEE-ADVANCED PREVIOUS YEAR'S

Q. 1 Ans.

(C)

Q. 2 (C) \mathbf{R} (minor)
(D) \mathbf{S} (major) (B,D)

Q. 3 (B)

Q. 4 (A, B, C)

O, P-directing due to its powerful +M effect.
With I_{2} only A is substituted, since -I is large, steric inhibition by large $-\mathrm{CMe}_{3}$ group forbids substitution at B or C.
-Br and -Cl become progessively more reactive, due to -
(a) increasing electrophilic nature of X^{\oplus} (not mentioned is any option).
(b) Smaller size most sterically hindered loaction is B which is substituted only by -Cl .
Q. 5 (D)

In dye test, phenolic -OH is converted to $-\mathrm{O}^{\ominus}$, which activates the ring towards EAS. This is possible only in alkaline solution. Hence (D).
Q. 6 (C)

P:

$\therefore \mathrm{P} \rightarrow 3$
Q:

$\therefore \mathrm{Q} \rightarrow 4$
R :

$\therefore \mathrm{S} \rightarrow 1$

Hence the answer is (C)
Note : Verifying any two can easily give you the answer complete details are given for reference \& understanding.
Q. 7 [4]
(I)

(II)

(III)

(Rosenmund's reaction)
(IV)

Q. 8 (B)

Q. 9 (A)

Q. 10 (BCD)

Q. 11 (A)

Comprehension \# 2 (Q. No. 12 to 13)

Q. 12 (B)

Q. 13 (B)

Process involved in $\mathrm{Q} \rightarrow \mathrm{R}$ reaction is alkylation.
Process involved in $R \rightarrow S$ reaction is alkylation.

Q. 14 (4.00)

Scheme 1 :

Scheme 2 :

Scheme 3 :

Ans. $\quad(2,4)$

Sol.

(2)

(4)

(Aromatic ion)
Ans. (B,D)

(1) $\mathrm{CH}_{3} \mathrm{MgBr}$
(2) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$

(S)
Q. 18 [18.60]

Molecular weight of aniline $=$ M.wt. of $\mathrm{C}_{6} \mathrm{NH}_{7}$

$$
=72+7+14=93
$$

density of $\mathrm{P}=1 \mathrm{gm} \mathrm{ml}^{-1}$
9.3 ml of $\mathrm{P}=9.3 \mathrm{gm} \mathrm{P}$
$=\frac{9.3}{9.3}=0.1 \mathrm{~mole} \mathrm{P}$
The mole ratio $\mathrm{PhNH}_{2}: \mathrm{PhN}_{2}{ }^{+}$:

$$
=1: 1: 1
$$

so the mole of Q formed will be 0.1 mole and extent of reaction is 100% but if it is 75% yield.

Then amount of $\mathrm{Q}=01 . \times \frac{75}{100}=0.075 \mathrm{~mol}$
The molecular formula of $\mathrm{Q}=\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ON}_{2}$ so M.wt. of $\mathrm{Q}=16 \times 12+12 \times 1+16+2 \times 14$

$$
\begin{aligned}
& =192+12+16+28 \\
& =248 \mathrm{gm}
\end{aligned}
$$

so amount of $\mathrm{Q}=248 \times 0.075$

$$
=18.6 \mathrm{gm}
$$

Q. 17 [18]

Carboxylic Acids and It's Derivatives and Nitrogen Containing Compounds(Amines)

EXERCISES

ELEMENTARY

Preparation of carboxylic acid and their derivative

Q. 1
(3)

Formic acid can not be prepared by grignard's reagent.
Higher acids are prepared by the reaction of CO_{2} on grignard's reagent

Q. 2 (4)

Q. 3 (1)

Q. 4 (2)
CO_{2} adds to Grignard's reagent to yield acids.

Q. 5 (4)

Acidity decreases with the decrease in electronegativity of halogen i.e.,

$$
\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{BrCH}_{2} \mathrm{COOH}
$$

Q. 6
Q. 7
Q. 8
(2)

Q. 9 (4)

$$
\mathrm{RCOOH} \xrightarrow{\mathrm{LiAH}_{4}} \mathrm{RCH}_{2} \mathrm{OH}
$$

Q. 10 (2)

$$
\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow{\mathrm{LiAl}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl}
$$

Q. 11 (1)

In this reaction $\alpha-H$ is replaced by chlorine
Q. 12 (2)

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH} \xrightarrow{\mathrm{LiAHH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} .}
$$

Q. 13 (3)

Q. 14 (1)

When succinic acid is heated it forms. Succinic anhydride

(4)

Amide group represent by the formula $-\mathrm{CONH}_{2}$

Q. 16 (1)

$\mathrm{pK}_{\mathrm{a}} \uparrow$ least acidic, acidic strength

Q. 17 (4)
$\mathrm{CHF}_{2}-\mathrm{COOH}$. Difluoroacetic acid is strongest because presence of two F atoms increases its acidic nature.

Q. 18 (4)

Q. 19 (1)
 $+\mathrm{NaBr}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
Q. 20 (3)

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2} \\
& \quad 2 \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Na} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2}
\end{aligned}
$$

Q. 21 (1)

It is picric acid because it has three $-\mathrm{NO}_{2}$ group are arranged which are ortho and para position
Q. 22 (2)
-COOH and -OH group form the hydrogen bond by which they have high boiling point. -COOH group show strong hydrogen bonding so it form dimer and have more boiling point than -OH group. While CHO group do not form hydrogen bond. Thus the reactivity order are as $3>1>2$.
Q. 23 (3)

Isocyanide on reduction gives secondary amine.
Q. 24 (4)

Q. 25 (3)
Q. 26 (2)

This reaction is used for preparation of primary aliphatic amines.
Q. 27 (2)
Q. 28 (3)

Test G

Group

(I) Iodoform test

(II) Victor mayer test
(III) Carbyl amine test
(IV) Libermann's reaction
$1^{\circ}, 2^{\circ} \& 3^{\circ}$ alcohol Primary amine Phinolic compound
Q. 29 (3)
(I)

(III) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}+\mathrm{NH}_{3} \xrightarrow[\Delta]{\mathrm{ZnCl}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
(IV) $\quad \mathrm{P}$ h C O-O-
$\mathrm{COPh}+\mathrm{NH}_{3} \rightarrow \mathrm{PhCONH}_{2}+\mathrm{PhCOOH}$
Q. 30 (4)

Tertiary amine does not react with nitrous acid because in it $\alpha-\mathrm{H}$ atom is absent.
Q. 31 (3)

Hinsberg Test
Q. 32 (4)

+ Bromine water \rightarrow
excess

Q. 33 (1)

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \rightarrow \\
& \substack{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC} \\
\text { Phenyl Isocyanide }}
\end{aligned}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

Q. 34 (2)

Q. 35 (2)
Q. 36 (2)

Presence of $-\mathrm{NO}_{2}$ group decreases electron density at o - and p - positions. Hence, incoming electrophile goes to m position. Therefore it is m -directing group.

Q. 37 (2)

Carboxylic Acid and Its Derivatives Amines (Nitrogen Containing Compounds)

Q. 38 (2)
Q. 39 (1)

NSR [Aryl halide] $\propto \frac{-\mathrm{M}}{+\mathrm{M}}$

Q. 40 (1)
Q. 41 (1)

Q. 42 (1)

Electron - density will be maximum at this position.
Q. 43 (3)
\rightarrow No resonance, more availability of cone - pair.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (D)

Treatment of sodium salt of phenol with CO_{2} under pressure bring about substitution of the carbonyl group -COOH , for the hydrogen of the ring. This is called as Kolbe's reaction

Sodium salt of phenol Sodium salicylate

Q. 2 (3)

Q. 3 (4)

Q. 4 (3)

Q. 16 (1)
 more reactive.

Q. 17 (1)

Q. 18 (4)

Q. 19 (2)

$$
\begin{align*}
& \mathrm{RCOOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCOCl}+\mathrm{POCl}_{3}+\mathrm{HCl} \xrightarrow{\mathrm{KCN}} \\
& \mathrm{RCOCN}+\mathrm{KCl} \xrightarrow{\mathrm{KCH}} \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}} \mathrm{RCOCOOH}+2 \mathrm{NH}_{3} \\
& \xrightarrow[\text { Zn- } \mathrm{Hg} / \text { Honc. } \text { Cenction HCl }]{\text { Clo }} \mathrm{RCH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{5} \\
\mathrm{H}_{3} \mathrm{C}-\mathrm{C}-\mathrm{OH} \\
3^{\circ} \text { alcohol } \\
\mathrm{C}_{2} \mathrm{H}_{5}
\end{gathered}
$$

Q. 21 (C)

Q. 22 (A)

Q. 23 (1)

Q. 24 D

Br at α-carbon
Q. 25 (A)

$\xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CO}_{2}$
Q. 26 (1)
$\binom{\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{O}}{\mathrm{O}}_{2} \mathrm{Ca} \xrightarrow{\Delta} \quad \mathrm{HCHO} \xrightarrow[\text { Canizaro reacion }]{\mathrm{NaOH}}$
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOONa} \underset{{ }_{360}{ }^{\circ} \mathrm{C}}{\stackrel{\Delta}{\mathrm{C}}} \underset{\mathrm{O}}{\mathrm{O}} \underset{\text { U }}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{3}$
Q. 27 (3)

Q. 28 (A)

Q. 29 (2)
Q. 30 (2)

$\mathrm{CH}_{3}-\mathrm{CN} \xrightarrow{\mathrm{H}_{2} / \mathrm{N}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Q. 31 (1)
Q. 32 (3)
$\mathrm{CH}_{3} \mathrm{COOH}$ does not give silver mirror test.
Q. 33 (4)
$\mathrm{CH}_{3} \mathrm{CH}_{\text {Propionicacaid }} \mathrm{COOH}(\mathrm{aq})+\underset{\text { sod. bicarbonate }}{\mathrm{NaHCO}_{3}(\mathrm{aq})} \rightarrow$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 34 (3)

Presence of methyl group decreases the acidic character of acetic acid due to positive inductive effect (+I).
Q. 36 (1)

Q. 37 (D)
Q. 38 (2)
$\mathrm{RCN} \xrightarrow{\text { Reduction }} \mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
[1° Amine]

$\mathrm{R}-\mathrm{NC} \xrightarrow{\text { Hydrolysis }} \mathrm{R}-\mathrm{NH}_{2}+\mathrm{HCOOH}$
[1 Amine]
$\mathrm{R}-\mathrm{NH}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{R}-\mathrm{OH}+\mathrm{N}_{2}-\mathrm{H}_{2} \mathrm{O}$
[Alcohol]
Q. 39 (3)

[B]

Q. 40 (3)
(i) $\mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \longrightarrow \mathrm{R}-\mathrm{NH}_{2}+\mathrm{HX}$
(ii) $\mathrm{R}-\mathrm{CH}=\mathrm{NOH} \xrightarrow[{\text { Na[Alcohol }}]]{[\mathrm{H}]} \mathrm{R}-\mathrm{CH}_{2}=\mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{R}-\mathrm{C} \equiv \mathrm{N}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{RCOOH}+\mathrm{NH}_{3}$

Q. 41 (1)
Q. 42 (1)

Q. 43 (4)
Q. 35 (3)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CCl}_{2}-\mathrm{COOH}$; α, α-dichloro butanoic acid is most acidic. Hence it will easily loose H^{+} ions in solution
Q. 44 (1)

Q. 45 (D)

Q. 46
(B)
Q. 47 (2)
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}_{2}+\mathrm{HNO}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$ [Alcohol]
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}_{2}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
[Shifts base]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{NOCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$

Q. 48 (2)

Q. 49 (1)
Q. 50 (3)

Since aniline is more reactive forwards ESR and in polar solvent [water] concentration of $\mathrm{E}^{\oplus}\left[\mathrm{Br}^{+}\right]$is also in good yield so Br^{\oplus} will attack on all o \& p position of molecule.
Q. 51 (C)
Q. 52 (3)

Q. 53 (1)

Q. 54 (3)
(A) Ammonical AgNO_{3} [Tollen's reagent]

(C) Alk. $\mathrm{KMnO}_{4}[1 \%$ alk. cold dil. $] \rightarrow$ Bayer's reagent \rightarrow Test of unsaturated
(D) $\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+\mathrm{NaOH} \rightarrow \mathrm{R}-\mathrm{N} \equiv \mathrm{C}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$
Q. 55 (4)
(a) $>\mathrm{C}=\mathrm{NH}-\mathrm{R}$ structure will be Shiff's Base.
(b)

(c)

(d)

Q. 56 (2)

Q. 57 (C)

$$
\mathrm{R}-\mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}} \mathrm{RCOOH}+\mathrm{NH}_{3}
$$

It yield amine when reduced as -
$\mathrm{R}-\mathrm{CN}+\mathrm{H}_{2} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
Q. 58 (3)

Q. 59 (3)

Quaternary ammonium salt
Q. 60 (A)
Q. 61 (B)
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \longrightarrow \mathrm{CH}_{3} \mathrm{NC}+3 \mathrm{KCl}$
$+3 \mathrm{H}_{2} \mathrm{O}$
Carbylamine reaction.
Q. 62 (4)

Q. 63 (4)
$\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CS}_{2} \xrightarrow{\mathrm{HgCl}_{2}} \mathrm{R}-\mathrm{SCH}$ Hoffmann mustrd oil reaction.
Q. 64 (4)
Q. 65 (4)

Q. 66 (3)
Q. 67 (4)

Phenyl hydroxyl amine
Q. 68 (3)

$\mathrm{CH}_{3} \mathrm{COCH}_{\text {(B) }}+\mathrm{Mg}<{ }_{I}^{\mathrm{OH}}$
Q. 70 (B)

(A)
Q. 71 (1)

Q. 72 (2)
Q. 73 (1)
Q. 74 (1)
Q. 75 (1)
Q. 76 (1)
Q. 77 (4)

Allyl isocyanide. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{N} \equiv \mathrm{C}$
Q. 78 (2)
Q. 79 (4)

Order of basicity of ethyl amines.
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}>$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
Q. $80 \quad$ (2)

JEE-ADVANCED
OBJECTIVE QUESTIONS
Q. 1 (B)

Q. 2 (A)

Acyl carbon shows addition elimination mechanism by attack of Nucleophilic.
Q. 3 (B)
Q. 4 (C)

Primary amines, secondary amines and ammonia all react rapidly with acid chlorides to form amides, This reaction takes place at room temperature and gives high yield.
Q. 5 (D)

Q. 6 (C)

\downarrow Pyridine

Q. 7 (C)

$\xrightarrow{140^{\circ} \mathrm{C}}$

Q. 8 (A)
(I) $\mathrm{CH}_{3}-\stackrel{\stackrel{\mathrm{O}}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$ Only Resonance
(II)

(III)

+ I effect of CH_{3}
(IV)

-I effect of Cl
Q. 9 (B)
-M effect $(-\mathrm{CHO})<-\mathrm{M}$ effect $\left(-\mathrm{NO}_{2}\right)$
Q. 10 (A)

Reactivity order of saponification of esters
$1^{\circ} \mathrm{R}>2^{\circ} \mathrm{R}>3^{\circ} \mathrm{R}$
Q. 11 (A)
(I)
 cause of -M effect of $-\mathrm{NO}_{2}$
(II)

because of -M effect of $-\mathrm{NO}_{2}>-\mathrm{M}$ effect $\left(-\mathrm{OCH}_{3}\right)$ (III) 6 member ring is less reactive to 4 member ring.
Q. 12 (B)
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{R} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \stackrel{\text { Ol }}{\mathrm{O}} \mathrm{CR}$; Reactivity order of esterification $\mathrm{H}>1^{\circ} \mathrm{R}>2^{\circ} \mathrm{R}>3^{\circ} \mathrm{R}$
Q. 13 (C)
$\mathrm{R}-\mathrm{COOH} \xrightarrow{\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{SO}_{4}} \stackrel{\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{OEt} \text { (esterification) }}{\mathrm{C}}$ Thus X is (C)
Q. 14 (C)

Q. 15 (B)

Q. 16 (B)

Ease of esterification for alcohols \propto more acidic alcohols
Q. 17 (D)

Q. 18 (C)

Q. 19 (C)

Q. 20 (C)

Q. 27 (B)
Q. 21 (A)

Q. 22 (B)

Q. 28 (A)

Q. 29 (D)
Q. 23 (A)

Thus $\mathrm{X}=(\mathrm{A})$
Q. 24 (A)

Q. 25 (D)
)

Q. 30 (A)

Q. 31 (C)

Q. 32 (C)

Q. 33 C

Q. 42 (C)

Q. 43 (A)

$\mathrm{RCNH}_{2} \xrightarrow[\Delta]{\stackrel{\ominus}{\mathrm{O}} \mathrm{H} / \mathrm{Br}_{2}} \mathrm{RNH}_{2}$
Q. 44 (B)

Q. 45 (A)

Q. 46 (B)

1° - Aromatic Chloroform amine (B)
(A)

Q. 47 (C)
(C) Slaked

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (BD)

Q. 2 (ABD)

Hydrolysis of acid derivative is an $\mathrm{S}_{\mathrm{N}} 2$ Th reaction and the reactivity of acid derivatives towards $\mathrm{S}_{\mathrm{N}} 2 \mathrm{Th}$ is

Q. 3 (ACD)

Rate of esterification $\propto \frac{1}{\text { Steric crowding }}$.
Q. 4 (BCD)

It is Hoffmann bromamide reaction which is 100% intramolecular.

Q. 5 (CD)

(A) Surface area decrease, solubility increase, so a is wrong order.
(B)

In it, due to the presence of intramolecular H - bonding the solubility is decrease, so b is wrong order.
(C)

$<$

$$
\mu=0 \quad \mu \neq 0
$$

so like dissolve like it is correct.
(D)

(I)

(II)

Its dipole moment is higher than II, then we say like dissolve like.
(BD)
Dipole moment of cis isomer > dipole moment of trans isomer and hence water solubility also of cis isomer is greater than trans isomer.

Comprehension-1 (Q. No. 7 to 9)
Q. 7
(B)

Q. 8

(A)

(19)

optically active

($3^{\circ} \&$ benzylic)

racemic mixture
Q. 9 (B)

Since (+) Octan-2-ol racemises on reaction with acetic acid, therefore it must have gone through an $\mathrm{S}_{\mathrm{N}} 1$ reaction i.e., type II reaction.

Comprehension-2 (Q. No. 10 to 12)
Q. 10 (C)

Q. 11 (D)

X is an anion and it has no acidic hydrogen.
Q. 12 (D)
any mono substituted benzene oxidises to benzoic acid.
Comprehension-3 (Q. No. 13 to 15)
Q. 13 (B)

Hoffmann rearrangement is only shown by 1° amide.
Q. 14 (D)

Rate of reaction in hoffmann rearrangement among difference amide depends on migratory aptitude of group in the amide.

Q. 15 (B)

Hoffmann rearrangement is 100% intramolecular. one amide will give only one amine with $\mathrm{Br}_{2} / \mathrm{OH}^{\ominus}$.

Comprehension-4 (Q. No. 16 to 18)

Q. 16 (A)

This is a Hoffmann bromamide reaction in which $\mathrm{Br}_{2} /$ HO^{-}i.e. NaOBr is used.

Q. 17 (B)

In this reaction migration of alkyl or aryl group is rate determining step.
Q. 18 (C)

This is a 100% intramolecular reaction and no cross product is formed.
Q. 19 (A) - (s) ; (B) - (q, s) ; (C) - (p, s) ; (D) - (p, r, s)
(A) It will be an acid base reaction.
(B) it is an acid catalysed esterification.
(C) it is an acid catalysed hydrolysis.
(D) It is a base catalysed hydrolysis which is also known as saponification
(A) - p,s ; (B) - q, s; (C) - p, s; (D) - r
(A)

\qquad

(B)

(C)

\qquad

(D)

NUMERICAL VALUE BASED

Q. 1 [2]

$$
\mathrm{CH}_{3} \mathrm{COOCH}_{3} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}
$$

Q. 2 [3]
Q. 3 [2]

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\text { Reap }]{\substack{\mathrm{Cl}_{2}}} \stackrel{\substack{\mathrm{Cl} \\ \mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{CH}}{ }-\mathrm{COOH}}}{\mathrm{Alc} \text {. } \mathrm{KOH}} \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH} \text { or } \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Q. 4 [6]

Dcarboxylation occurs via six membered transition state.
Q. 5 [1]

Hydroxide ion promotes only hydrolysis reaction. It can't promote trans esterification reactions as anion of the acid will be formed from ester. In acetaldehyde only alpha hydrogens are exchanged.
Q. 6 [8]
(A) \Rightarrow Colour with cerric ammonium nitrate
\Rightarrow Alcoholic group.

(D)
Q. 7 [2]

Q. 8 [3]

Three products can be formed namely $1,4,9$ In Hofmann bromamide reaction there is intramolecular migration of alkyl or aryl groups so cross products are not formed.
Q. 9 [5]
(1)

Friedel craft acylation Iodoform reaction
(2)

(3)

(4)

(5)

Q. 2 (3)

(6)

Q. 3 (B)

Q. 10 [4]

Q. 4
Q. 11 [5]

Only primary amines can be prepared by this method. The second step involves $\mathrm{S}_{\mathrm{N}} 2$ reaction. Therefore

and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{X}$ are not expected to give $\mathrm{S}_{\mathrm{N}} 2$.
Q. 12 [4]

The chemical reaction involved is as follows:

Net increase in mol. Mass on acylation of one $-\mathrm{NH}_{2}$ group $=$ Mol. Mass of $\mathrm{CH}_{3} \mathrm{CO}$ group - At. Mass of H^{2} $=43-1=42$
Actual increase in mol. Mass on acylation
$=348-180=168$
no. $\mathrm{CH}_{3} \mathrm{CO}$ group added $=168 / 42=4$
Hence the compound has $4-\mathrm{NH}_{2}$ groups.

KVPY

PREVIOUS YEAR'S

Q. 1
 (A)

$\mathrm{H}_{3} \mathrm{C}-\mathrm{COOH} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}}$
$\mathrm{H}_{3} \mathrm{C}-\mathrm{COO}^{-} . \stackrel{+}{\mathrm{N}} \mathrm{H}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow$
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
Q. 7 (A)

Q. 8 (C)

Q. 9 (B)

This is example of wolfkishner reduction which converts.
$\stackrel{\text { C }=\mathrm{O} \text { in } / \mathrm{C}=\mathrm{H}_{2} \text { Group But do not reduce }-\mathrm{COOH}}{ }$ group.
Q. 10 (A)

Q. 11 (A)

Q. 16 (C)

Q. 17 (A)

Q. 18 (B)

Q. 19 (B)

Hexane - 1, 6-dioic aicd
Q. 20 (A)

Y

Q. 21 (B)

Benzene
Q. 22 (C)

This is a Name Reaction to prepare 1° amine.
Q. 23 (A)

Q. 24 (B)

Q.25. (A)

$\mathrm{CH}_{3}-\mathrm{CN}$ is common name \Rightarrow Acetonitrile

Q. 26 (B)

JEE MAINS
PREVIOUS YEAR'S
Q. 1

$(\mathrm{A}) \xrightarrow{\text { Hydrolysis }}$

(B)

2-Butanone forms oxime with $\mathrm{NH}_{2} \mathrm{OH}$ but does not give Tollen's test.
Q. 2 (a)

According to the question the amine should be amine, in which one of the alkyl group should will, because it can be formed by
Q. 3 (2)

In acidic medium, aniline is converted into anilinium ion which is meta directing so meta product is formed in significant amount.
Q. 4

Q. 5 (3)
Q. 6
(4)

In acidic medium, aniline is converted into anilinium ion which is meta directing
Q. 7 (3)

Alcohols give positive test with ceric ammonium nitrate and primary amines gives carbyl amine test with $\mathrm{CHCl}_{3}, \mathrm{KOH}$.
(3)

Only aliphatic amines can be prepared by Gabriel phthalimide synthesis.

Only aromatic Primary amines will gives Dye test.
(1)

Q. 11 (2)
Q. 12 (2)
$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{HOOC}-\mathrm{COOH} \xrightarrow{210^{\circ} \mathrm{C}}$ $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
Q. 13 (3)
(1) $\mathrm{CH}_{3} \mathrm{CN}+\mathrm{DiBAL}-\mathrm{H} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}$ (acetaldehyde)
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Cu}$, heat $\longrightarrow \mathrm{CH}_{3} \mathrm{CHO}$ (acetaldehyde)
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
(4) $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{O}_{2} \xrightarrow[\text { pd(II),Cu(II)in water }]{\text { Catast }} \mathrm{CH}_{3} \mathrm{CHO}$ (acetaldehyde)
Q. 14 (1)
$\xrightarrow{\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}} \xrightarrow{(2) \mathrm{SOCl}_{2}} \mathrm{CH}_{3} \mathrm{COCl} \xrightarrow{(1) \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}} \xrightarrow{(3) \mathrm{H}_{2}, \mathrm{pd}^{2} \mathrm{BaSO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}$
Q. 15 (3)

Q. 16 (3)

(A)
(2\%)
(B)
(47\%)
(C)
(51\%)
\% yield order $\Rightarrow \mathrm{C}>\mathrm{B}>\mathrm{A}$

Q. 18 (4)

Hinsberg reagent (Benzene sulphonyl chloride) gives reaction product with 1° amine and it is soluble in dil. NaOH .

(1° amine)

Q. 19 (1)

Q. 20 (3)

Q. 21 (2)

Q. 22 (1)

Primary amines react with Para Toluene sulfonyl chloride to form a precipitate that is soluble in NaOH . Secondary amines reacts with para toluene sulfonyl chloride to give a precipitate that is insoluble in NaOH . Tertiary amines do not react with para toluen.
Q. 23 (4)

The process of cleavage of the $\mathrm{C}-\mathrm{X}$ bond by Ammonia molecule is known as ammonolysis.
Ex : $\mathrm{R}-\mathrm{CH}-\mathrm{Cl}_{2}+\ddot{\mathrm{N}} \mathrm{H} \longrightarrow 3 \mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
Q. 24 (4)

Q. 25 (2)

Hoffmann bromamide degradation reaction :

Carbylamine reaction
Q. 26 (4)

Q. 27 (3)

So the purpose of NaOH in the above reactions in to remove acidic impurities.
Q. 28 (3)

$\Rightarrow \quad$ This reaction does not involve haffmann bromanide degradation.
$\Rightarrow \quad$ Rest all options involve haffmann bromamide degradation during the reaction of $\mathrm{Br}_{2}+\mathrm{NaOH}$ with amide.
Q. 29 (3)

Diazotisation
Reaction
(B)
Q. 30 (1)

Q. 50 (2)

\downarrow

(A)

(B)
(Major)

JEE-ADVANCED
 PREVIOUS YEAR'S

Q. 1 (A)

Q. 2 (D)

Q. 3 (B)

In decarboxylation, α-carbon acquires δ - charge. Whenever δ - charge is stabilized, decarboxylation becomes simple. In (B), it is stabilized by -m \& -I of $\mathrm{C}=\mathrm{O}$, which is best amongst the options offered,

Q. 4 (A,C,D)

Q. $5 \quad$ (2)

No. of -COOH group is ' 2 '.

Comprehension (Q. No. 6 to 7)

Q. 6 (B)
Q. 7 (A)
(6 \& 7)

(Racemic Mixture)

(0)

Q. 8 (A)

Allylic radical are more stable than alkyl radical, so when there is a possibility of formation of allyl radical, it will undergo fragmentation through formation of allyl radical, ie. fragmentation produces stable radical.
On the basis of stability of radical, fragmentation can be done as

Column I
 Explanation
 P. Pathway P

$\mathrm{C}_{6} \mathrm{H}_{5}-\dot{\mathrm{C}} \mathrm{H}_{2}+\mathrm{CO}_{2} \mathrm{CH}_{3} \dot{\mathrm{O}}$
Q. Pathway Q

Column II

1

$\rightarrow \mathrm{Ph}-\dot{\mathrm{C}} \mathrm{H}_{2}+\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$
R. Pathway R

3

S. Pathway S

Codes
P-1, Q-3, R-4, S-2
Comprehension (Q. No. 9 to 10)
(C)

Q. 10 (A)

Comprehension (Q. No. 11 to 12)
Q. 11 (A)
Q. 12 (B)

Question Stem for Question Nos. 13 and 14

Q. 13 [3. 57]

The value of \mathbf{x} is
$3 \mathrm{Sn}+6 \mathrm{HCl}+$

$$
(72+8+35)+14
$$

$=129 \mathrm{gm}$ (molecular weight of organic salt)
So to get 1.29 gm organic salt.
We have to form 0.01 mole salt.
So 0.01 mole nitrobenzene is required.
0.03 mole Sn is required.

So the amount of nitrobenzene
$=0.01 \times 123=1.23 \mathrm{gm}$
the amount of Sn required $=0.010+357=3.57 \mathrm{gm}$
Ans. 3.57 \& 1.23
Q. 141.23

The value of y is

$$
(72+8+35)+14
$$

$=129 \mathrm{gm}$ (molecular weight of organic salt)
So to get 1.29 gm organic salt.
We have to form 0.01 mole salt.
So 0.01 mole nitrobenzene is required. 0.03 mole Sn is required.

So the amount of nitrobenzene

$$
=0.01 \times 123=1.23 \mathrm{gm}
$$

the amount of Sn required $=0.01 \times 357=3.57 \mathrm{gm}$
Ans. 3.57 \& 1.23

Biomolecules

EXERCISES

ELEMENTARY
Q. 1 (1) All are optically active.
Q. 2 (3)
Q. 3 (3)

Threose $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
Q. 4
Q. 5 (3)

Carbohydrates are hydrates of carbon. Their general formula is $\mathrm{C}_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$
Q. 6 (1)
Q. 7 (4)

5 hydroxy groups

- 4 secondary and one primary alcoholic
 1 aldehyde group
Q. 8 (4)
Q. 9 (2)

2 mono sacchanide di sacchanide
Q. 10 (1)
Q. 11 (2)

Sucrose is not a reducing sugar.
Q. 12 (1)
Q. 13 (1)

Maltose is made up of 2 glucose molecules.
Q. 14 (4)
Q. 15
Q. 15 (3)

alanine (α amino propionic acid)
Q. 16 (3)

Isoelectric point is a pH at which zwitter ions do not migrate towards any of the electrode.

Q. 17 (2)

Q. 18 (1)
Q. 19 (1)
Q. 20 (3)
Q. 21 (4)

The linkage in protein is a amide (Peptide) bond.

$$
\begin{align*}
& \mathrm{O} \tag{4}\\
& -\mathrm{C}-\mathrm{NH}-
\end{align*}
$$

Q. 24 (4) $\underbrace{\text { Nitrogenbase }+ \text { Sugar }}_{\text {Nucleoside }}+$ Phosphate
Q. 25 (1)

Adenine is a purine base common in both RNA and DNA
Q. 26 (3)
Q. 27 (1)
Q. 28 (2)
Q. 29 (1)
Q. 30 (4)

Zinc ions hold six insulin molecule to make it as hexamer
Q. 31 (2)

JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1 (3)
Q. 2 (1)
Q. 3 (1)
Q. $4 \quad$ (1)
Q. $5 \quad$ (C)
Q. 6 (1)
Q. 7 (3)
Q. 8 (4)

The dipeptide is made of two amino acids they are alanine and glycine hence the name of dipeptide is alanylglycine. Hence
Q. 9 (3)

The force of attraction between the neighbouring peptide chains is hydrogen bonding.
Q. 10 (1)

Since in (1) the number of amino groups is more than that of carboxylic groups. Therefore it is basic.
Q. 11 (2)
(1) - amino acid is that in which $-\mathrm{NH}_{2}$ group is present at α - carbon.
Q. 12 (3)
Q. 13 (4)
Q. 14 (2)
Q. 15 (4)
Q. 16 (4)
Q. 17 (1)
Q. 18 (4)
Q. 19 (4)
Q. 20 (3)
Q. 21 (2)
Q. 22 (1)
Q. 24 (4)
Q. 25 (4)
Q. 26 (3)

The peptide linkage

Q. 27 (2)
Q. 28 (3)
Q. 29 (2)
Q. 30 (3)
Q. 31 (2)
Q. 32 (2)
Q. 33 (4)
Q. 34 (3)
Q. 35 (2)
Q. 36 (4)
Q. 37 (1)
Q. 38 (4)
Q. 39 (4)
Q. 40 (4)
Q. 41 (3)
Q. 42 (3)
Q. 43 (4)
Q. 44 (2)
Q. 45 (3)
Q. 46 (1)
Q. 47 (1)
Q. 48 (4)
Q. 49 (D)
Q. 50 (2)
Q. 51 (2)

Pentose sugar: Phosphoric acid, pyrimidines and purines
Q. 52 (3)
Q. 53 (2)
Q. 54 (1)
Q. 55 (4)
Q. 56 (1)
Q. 57 (2)
Q. 58 (4)

Q. 59	(2)
Q. 60	(1)
Q.61	(1)
Q.62	(2)
Q. 63	(1)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (A)
(A) is the Hawarth projection of $\alpha-D-g l u c o s e ~ i t ~ i s ~$ also known as glucopyranose.
Q. 2 (D)

$\downarrow \mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$

$+$

Glucose (1 mole)

Q. 3 (B)

Spontaneous change in the optical rotation of an optically active substance is known as mutarotation.
Q. 4 (B)

Fructose reduces Fehling solution but sucrose does not.

Q. 5 (B)

In osazone formation first phenyl hydrazine molecule forms hydrazone at $\mathrm{C}-1$ second phenyl hydrazine molecule Oxidises the second carbon to carbonyl and third phenyl hydrazine molecule forms hydroazone with $\mathrm{C}-2$.

Q. 6 (C)

Glucose shows mutarotation.
Q. 7 (D)

In the formation of osazone $\mathrm{C}-1$ and $\mathrm{C}-2$ react with phenyl hydrazine to form phenyl hydrazone. If $\mathrm{C}-3$, $\mathrm{C}-4, \mathrm{C}-5$ have same configuration the carbohydrates will form same osazone even if they differ in configuration at $\mathrm{C}-1$ or $\mathrm{C}-2$.
Q. 8 (B)

Q. 9 (B)

T.S.I. $=2^{\mathrm{n}-1}+2^{\mathrm{P}-1}$
$\mathrm{n}=$ even $\mathrm{P}=\frac{\mathrm{n}+1}{2}$
T.S.I. $=10(8+2)$ mese
optical active
Q. 10 (A)

Q. 11 (B)

β-D-Glucopyranose

Q. 12 (A)

D-glucose
\qquad
Enatiomers
Q. 13 (C)

C_{2}-EPimers
Q. 14 (B)

Q. 15 (B)

Q. 16 (D)
(no - anomeric OH)
(non Reducing suger)
Q. 17 (C)

Oligosaccharides $\Rightarrow 2-10$ monosaccharide units are present.
Q. 18 (C)
non reducing sugar
Sucrose (1,2-glycosidic linkage of α-glucose, β Dfrutose)

Q. 19 (D)

Reducing sugar $=$ fructose
Q. 20 (C)

D-fructose $\rightleftharpoons \mathrm{D}$ glucose $\rightleftharpoons \alpha$-D-glucose exist in 3 forms (Isomeric)
Q. 21 (D)

Q. 22 (D)

Surcrose - X (Anomeric -OH is absent)
Maltose Lactose $] \longleftarrow$ Anomeric OH is present
Q. 23 (D)

Q. 24 (C)
(A) Enantiomers
(B) Functional Isomers
(C) C-3 epimers epimers
Q. 25 (B)

Since proline has 2° amino group.
Q. 26 (C)

Q. 27 (B)

Aspartame is an artificial sweetener, III is incorrect statement aspartame is an ester derivative of a dipeptide, made by aspartic acid and phenylalanine.
Q. 28 (B)

Q. 29 (A)
$\mathrm{P}^{\mathrm{Ka}}=2.34$
$\mathrm{p}^{\mathrm{Ka}}=9.60$
$\mathrm{P}^{\mathrm{I}}=\frac{\mathrm{P}^{\mathrm{Ka}}+\mathrm{P}^{\mathrm{Ka}}{ }_{2}}{2}=\frac{2.34+9.60}{2}=\frac{11.94}{2}=5.92$
Q. 30 (D)

Lactose \longrightarrow galactose and Glucose
Q. 31 (D)

So compound in which $-\mathrm{NH}_{2} \mathrm{gp} \&-\mathrm{COOH}$ gp both are present are known as amineacid.
Q. 32 (C)

Q. 33 (C)

Q. 34 (A)

Q. 35 (A)

Starch is natural polymer of D-glucose

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (BCD)

Starch is the mixture of two polysaccharides -
Amylose and amylopectine
Q. 2 (B, D)

I is L-sugar whereas II \& III is D-sugar.
Q. 3 (ACD)

6 membered ring with oxygen making a center is pyranose form.
Q. 4 (AC)

A is α D-mannose and C is β-D-mannose
Q. 5 (ABCD)

Cabohydrate having different stereochemistry at C-1 are termed as Anomers, whereas when stereochemistry at any other carbon is different then those carbohydrates are known as epimers.
Q. 6 (ABCD)
Q. 7 (ABD)

Nylon-6 is a polyamide molecule.

Q. 8 (A,B,C)

Same Osazone
$\left.\begin{array}{l}\text { D-glucose } \\ \text { D-Mannose } \\ \text { D-fructose }\end{array}\right]$ same osazone
Q. 9 (B,C)

(X) Non Reducing

(Y) Reducing
Q. 10 (A,B,D)
positive Tollens - Anomeric -OH
Q. 11 (CD)

Glucose shows mutarotation, sucrose gives glucose and fructose on hydrolysis.
Q. 12 (AB)

Sucrose and lactose are disaccharides.

Comprehension \# 1 (Q. No. 13 to 15)

Q. 13 (A^{*})
Q. 14 (C*)
Q. 15 (B*)
$\mathrm{P}^{\mathrm{Ka}_{3}}$ value of side chain determines the nature of amino acid
14 For acidic amino acid.

$$
\mathrm{P}^{\mathrm{I}}=\frac{\mathrm{P}^{\mathrm{Ka}}{ }_{1}+\mathrm{P}^{\mathrm{ka}}}{2}=\frac{1.88+3.65}{2}=\frac{5.53}{2}=2.77
$$

For basic amino acids

$$
\mathrm{P}^{\mathrm{I}}=\frac{\mathrm{P}^{\mathrm{Ka}}{ }_{2}+\mathrm{P}^{\mathrm{ka}}{ }_{3}}{2}=\frac{8.95+10.53}{2}=\frac{19.48}{2}=9.74
$$

Comprehension \# 2 (Q. No. 16 to 18)

Q. 16 (B*)
Q. 17 (A*)
Q. 18 (C*)
$16 \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{Br}$ is highyl reactive toward SN^{2} in base, so all the -OH groups will be converted to $\mathrm{OCH}_{2} \mathrm{Ph}$ groups.

17 Q is pentamethyl derivative, on hydrolysis only- OCH_{3} of $\mathrm{C}-1$ (Part of acetal) will be converted to OH .

C-5 oxygen is involved in cyclic hemiacetal

18 TBDPSCl is regioselective for primary -OH groups in sugars

Comprehension \# 3 (Q. 19 to Q.21)
Q. 19 (B)
Q. 20 (A)
Q. 20 (D)

19

L-glucose

Q. 22 (A) - q; (B) - r; (C) - p; (D) - p

(B)

Lactose
(C)

Q. 23 (A) - q ; (B) - p ; (C) -s (D) - r
(A) has one acetal linkage thus is a disaccharide.
(B) has one amide linkage.
(C) has two amide linkages.
(D) is reduction product of

Q. 24 (A) $-\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$; (B) - p,q,r ; (C) -T ; (D) - p, r

Column-I

Column-II
(A) α-D-Glucose (P,Q,R,S)
(P) Undergoes osazone formation
(B) β-D-Glucose ($\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$)
(Q) On acethylation reaction with acetic
anhydride weight increase by 210
(C)

(R) It is reducing suger
(D)

(S) It is known as α-D-Glucopyranose
(D)
Q. 25 (A) - p,s ; (B) - q, s ; (C) - r, s

NUMERICAL VALUE BASED

Q. 1 [9]

$(3)^{2}=9$
Q. 2 [9].

For each fragment of 400 unit $=\frac{4000}{400}=10$ fragments are obtained of 400 unit length.
So $(10-1)=9$ glycosidic linkage cleaved.
Q. 3 [3]
(i), (ii) and (iii) are true but (iv) is False because the glycosides are non-super impossible non-mirror images hence they are diastereomers.
Q. 4 [3]

Molecular weight of octapeptide is $516 \mathrm{~g} / \mathrm{mole}$.
Total bonds to be hydrolysed $(8-1)=7$.
Total weight of $\mathrm{H}_{2} \mathrm{O}$ added $=7 \times 18=126 \mathrm{gm} / \mathrm{mole}$
Total weight of hydrolysed product $=126+516=$ 642 gm .

Total weight of alanine in product $=\frac{642 \times 41.59}{100}=$ 267 gm.
Molecular weight of alanine $=89 \mathrm{~g} / \mathrm{mole}$.
Number of alanine unit $=\frac{267}{89}=3$.
Q. 5 [4]
Q. 6 [32]
$\mathrm{pI}=\frac{2.19+4.25}{2}=3.22$

$$
3.22 \times 10=32
$$

Q. 7 [16]
Q. 8 [6]

$$
\mathrm{pH}_{2}=\frac{\mathrm{pk}_{\mathrm{a}_{1}}+\mathrm{pk}_{\mathrm{a}_{2}}}{2}=\frac{2.34+9.66}{2}=6
$$

Q. 9 [3]

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{16}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& \text { Raffinose } \\
& \text { Glu cose } \\
& \text { Fructose Galactose }
\end{aligned}
$$

Q. 10 [4]

 molecular mass increases by $42(12+16+14)$.
\therefore number of -OH groups $=\frac{318-150}{42}=4$
Q. 114

$$
\mathrm{pI}=\frac{\mathrm{pKa}(\beta)+\mathrm{pKa}(\gamma)}{2}
$$

$$
=\frac{-\log \left(10^{-5}\right)+-\log \left(10^{-3}\right)}{2}=4
$$

Q. 12 [2]
Q. 13 [2]
Q. 14 [6]
Q. 15 [3]

Q. 16 [8]

It gives octa acetyl derivative

A pentapeptide has fice amino acids joined by four peptide bonds.

Q. 18 [2]

Q. 19 [2]

Q. 20 [9]

$$
\frac{p k a_{2}+p k a_{3}}{2}=\frac{8+10}{2}=9
$$

Q. 21 [5]

Except III, all are less acidic than

KVPY

PREVIOUS YEAR'S

Q. 1
(A)

Q. 2 (A)

Q. 3 (B)

D(+) Glucose

Enantiomer
Q. 4 (D)

α-D Glucose \rightleftharpoons	Open chain $\rightleftharpoons \beta$-D Glucose
Structure	35%
Glucose	65%

Q. 5 (C)

D-Glucose

* Tollen's reagent oxidise aldehyde group $\binom{-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{H}}{\mathrm{O}}$ in to carboxylic acid $\binom{-\mathrm{C}-\mathrm{OH}}{\mathrm{O}}$.
Q. 6 (B)

Q. 7 (B)

Haemoglobin is oxygen carrier.
Q. 8 (D)

Note glycine is achiral, therefore possible combinatuions are:
(A) Valine serine glycine alanine
(B) Serine valine glycine alanine
(C) Valine glycine serine alanine
(D) Serine glycine valine alanine

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (3)

Seliwanoff's test is used to distinguish between carbohydrates and xanthoprotic test is used to distinguish proteins.
Q. $9 \quad$ (3)
Q. 2 (4)
(A) Sucrose - α-glucose and β-fructose
(B) Lactose - β-galactose and β-glucose
(C) Maltose $-\alpha$-glucose and α-glucose
Q. 3 (1)

The secondary structure of protein includes two type :
(a) α-Helix
(b) β-pleated sheet

In α-Helix structure, the poly peptide chain is coil around due to presence of Intramolecular HBonding.
Q. 4 (1)

β-D-Galactose
β-D-Glucose

The linkage is between C-1 of Galactose and C-4 of Glucose.
Q. $5 \quad$ (1)

Hydrogen bond is responsible for the stacking of $\alpha-$ helix structure of protein.
Q. 6 (4)

(Non reducing sugar)	(Reducing sugar)	(Reducing sugar)

Q. 7 (3)

Informative

OR

$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Invertase }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ Glucose Fructose
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{\text { Zymase }} 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
Q. 8 (2)

Fructose is a ketohexose.

Q. 10 (1)

Due to deficiency of Vitmain K causes increases in blood clotting time.
Note : Vitamin K related to blood factor.
Q. 11 (2) Vitamin-A \& Vitamin-D
Q. 12 (667)
Q. 13 (1)
Q. 14 (4)
Q. 15 (4)
Q. 16 (3)
Q. 17 (3)
Q. 18 (4)
Q. 19 (4)
Q. 20 (3)
Q. 21
(4)
Q. 22 (4)
Q. 23 (2)
Q. 24 (1)
Q. 25 (2)

Keratin, collagen and myosin are example of fibrous protein.
Q. 26 (3)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (6)

Structure of melamine is as follows

Total no. of lone pairs of electron is '6'.
Q. 2 (B, C)

Specific rotation of $\mathrm{D}(+)$ glucose $=+52^{0}$
Specific rotation of $D(-)$ fructose $=-92^{0}$
On adding equimolar mix of above two, the specific
rotation of invert sugar is $\frac{+52-92}{2}=-20^{\circ}$
Q. $3(1,2,3,4)$
(1) True:

D (+) glucose

Gluconic acid

At $\mathrm{pH}=2 \quad \stackrel{1}{\mathrm{~N}} \mathrm{H}_{2}$ and $\stackrel{2}{\mathrm{~N}_{2}}$ of Tyrosine and Lysine is
+ve charged (+1 each)

$$
+2\left|z_{1}\right|=2
$$

At $\mathrm{pH}=6 \quad \mathrm{NH}_{2}$ of Lysine (+1), $\mathrm{COOH}(-1)$ of glutamic acid, so because of dipolar ion exist $\left|z_{2}\right|=0$
At $\mathrm{pH}=11 \quad \mathrm{COOH}$ of Glutamic acid (-1)
COOH of Lysine (-1)
OH of phenol (-1)

$$
\left|z_{3}\right|=3
$$

Polymer

EXERCISES

Elementary

Q. 1 (1) It is present in the cell wall of plant.
Q. 2 (4)

Q. 3 (3)

Bakelite is thermosetting polymer. It becomes infusible on heating and can not be remoulded

Q. 4 (2)

Nylon-66 is manufactured by the condensation polymerization of adipic acid and hexamethylenediamine with the lose of $\mathrm{H}_{2} \mathrm{O}$ as steam.
Q. 5 (2)
Q. 6 (4)
Q. 7 (2)

Q. 8 (4)

Bakelite is a thermoseting plastic
Q. 9 (3)
Q. 10 (1)

Caprolactam in a monomen of nylon 6 (poly caprolactam)

Q. 11 (1)

JEE-MAIN
 OBJECTIVE QUESTIONS
 Q. 1 (1)
 Plexiglass is poly methyl methacrylate (PMMA) it is a homo polymer of methyl methacrylate

Q. 2 (2)
Q. 3 (1)
Q. 4 (4)
Q. 5 (2)
Q. 6 (1)

Q. 7 (1)

Starch is polymer of $\alpha-D-$ glucose.
Q. 8 (3)

The monomer of Nylon - 66 are adipic acid and hexamethylene diamine.
Q. 9 (1)

Nylon - 66 has amide linkage.
Q. 10 (3)

Preparation of nylon - 66 is an example of condensation polymer, as it is formed by elimination of $\mathrm{H}_{2} \mathrm{O}$ molecules from hexamethylenediamine and adipic acid.
Q. 11 (3) melamine is 2,4,6-triamino -1,3,5-triazine

Q. 12 (3)

Q. 13 (2)
Q. 14 (4)
Q. 15 (2)
Q. 16 (1)
Q. 17 (1)
Q. 18 (3)
Q. 19 (3)
Q. 20 (1)
Q. 21 (3)
Q. 22 (3)

Ziegler Natta Catalyst is $\mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{6}+\mathrm{TiCI}_{4}$

Q. 23 (2)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

Final product shown in the reaction is natural rubber (iso prene).
Q. 2 (B)
Given polymer is formed by Urea and formaldehyde, hence is called Urea formaldehyde resine.
Q. 3 (A)

Q. 4 (B)

Q. 5 (B)

Weakest intermolecular force $=$ Natural Rubber
Q. 6 (D)

All are free radical initiators and catalyse the free radical polymerisation.

JEE-ADVANCED

COMPREHENSION/MATCHING

Q. 1 (B)

Bakelite is polymer of phenol and formaldehyde. The polymer formed by polymerisation of two monomers is called copolymer.
Q. 2 (C)

Cellulose is a natural biodegradable polymer.
Q. 3 (B)

Q. 4 A-PS; B-QR; C-PS; D-QR

Column-I

Column-II
(A) Terylene (P,S)
(P) Condensation polymerisation
(B) Styrene (Q, R)
(Q) Addition Polymerisation
(C) Bakellite (P,S)
(R) Homo Polymer
(D) Teflon (Q,R)
(S) CO-Polymer
Q. 5 A-P, S; B-Q, R; C-P, S; D-Q,R

Column-I
Column-II
(A) Nylone 66(P,S)
(P) Condlnsation polymerisation
(B) styrene (Q, R)
(Q) Addition polymerisation
(C) Baketite (P,S)
(R) Home polymer
(D) Teflon (Q,R)
(S) Co-polymer
Q. $6 \quad \mathrm{~A} \rightarrow \mathrm{~s} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{p}$
(A) Monomers of bakelite are : Phenol + formaldehyde.
(B) Monomer of Polypropene is : Propene
(C) Monomers of Glyptal are : Ethylene glycol + phthalic anhydride
(D) Monomer of Nylon-6 is : ω - caprolactum.
Q. $7 \quad(\mathrm{~A}) \rightarrow \mathrm{s} ;(\mathrm{B}) \rightarrow \mathrm{r} ;(\mathrm{C}) \rightarrow \mathrm{q} ;(\mathrm{D}) \rightarrow(\mathrm{p})$

NUMERCIAL VALUE BASED

Q. 1 [3]

Q. 2 [2]
Q. 3 [4]

KVPY

PREVIOUS YEAR'S

Q. 1 (A)

Polyacetic acid is biodegradable polymer.

Q. 2 (A)

Glycine (fact based)

JEE-MAIN

PREVIOUS YEAR'S

Q. 1

Q. 2

Q. 3 (2)

Buna-S is the co-polymer of buta-1,3-diene and styrene
Q. 4 (1)
Q. 5
Q. 6
Q. 7
Q. 8
Q. 9
Q. 10 (1)
Q. 11
Q. 12 (1)

Novalac is a linear polymer of [Ph-OH + HCHO]. So ester linkage not present.
So novalac is not a polyester.
Q. 13 (2)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (ABCD)

(C) $\mathrm{NH}_{2} \mathrm{OC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CONH}_{2} \xrightarrow[\mathrm{NaOH}_{2} \Delta]{\mathrm{Br}_{2}} \mathrm{NH}_{2}-$

(D)
$\mathrm{NC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CN} \xrightarrow[\Delta]{\mathrm{H}_{2} / \mathrm{Ni}} \mathrm{NH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$ $\xrightarrow[\Delta]{\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}}$

Q. 2 (A)

$\stackrel{\left.\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}\right)_{n}}{\left(\mathrm{CH}_{2}-\right.}$
Ethylene-propylene copolymer
Q. 3 (B,D)
A. Natural rubber is polyisoprene containing cis alkene units
B. Nylon-6 has amide linkage $\left\lceil\mathrm{HN}-\left(\mathrm{CH}_{2}\right)_{5}-\underset{\mathrm{O}}{\mathrm{C}}{\underset{\mathrm{O}}{\mathrm{n}}}\right.$
C. Cellulose has only β-D glucose units.
D. $\mathrm{F}_{2} \mathrm{C}=\mathrm{CF}_{2} \xrightarrow{\text { Persulphate }}\left[\mathrm{CF}_{2}-\mathrm{CF}_{2}\right]_{\mathrm{n}}$

EXERCISES

Q. 1 (3)
Q. 2 (3)
Q. 3 (1)
Q. $4 \quad$ (4)
Q. 5 (3)
Q. 6 (3)
Q. 7 (2)
Q. 8 (2)
Q. 9 (1)
Q. 10 (1)
Q. 11 (1)
Q. 12 (1)
Q. 13 (1)
Q. 14 (2)
Q. 15 (3)
Q. 16 (2)
Q. 17 (3)
Q. 18 (3)
Q. 19 (4)
Q. 20 (2)
Q. 21 (4)
Q. 22 (3)
Q. 23 (4)
Q. 24 (3)

Q. 25

(1)
Q. 26 (2)
Q. 27 (1)
Q. 28 (2)
Q. 29 (1)
Q. 30 (1)
Q. 31 (1)
Q. 32 (2)
Q. 33 (4)
Q. 34 (1)
Q. 35 (3)
Q. 36 (1)
Q. 37 (2)

Soaps are sodium salts of long chain fatty carboxylic acids e.g. sodium oleate $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COO}^{-} \mathrm{Na}^{+}$Similarly sodium stearate is a soap of a saturated fatty acid $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$. Sodium palmitate is $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$. Soaps form micelle in which there is one hydrophobic part and another is hydrophillic part

> Hydrophobic part

Q. 38 (4)

The incorrect statemet is, "soaps work more efficiently in hard water than in soft water. Soaps actually do not give foams in hard water due to formation of insoluble salts like calcium stearate and magnesium stearate with hard water containing impurities of $\mathrm{Ca} \& \mathrm{Mg}$ carbonates and bicarbonates.
Q. 39 (4)

The incorrect statement is that LABS detergents are not biodegradable. Actually all detergent are not biodegradable and they cause pollution and hazaradous to human civilization.
Q. 40 (4)

The incorrect statement about detergent is that, fluorescers are the organic compounds which act as foaming agents. Actually fluorescers are optically whitening agents which cause the clothes white and impart whitening in it. These are also known as fluorescent brighteners. They are stilbine derivatives.

Q. 41 (4)

All statements are true

JEE-ADVANCED

MATCHING

Q. $1 \quad$ (A -q), (B -s), (C - r), (D-p)
Q. 2 (A-r), (B- s), (C-p), (D-q)

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

Q. 2 (D)

Cetyltrimethyl ammonium bromide is used for sanitizing agent.

JEE-MAIN

PREVIOUS YEAR’S
Q. $1 \quad \mathrm{a} \rightarrow \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{q} ; \mathrm{c} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{p}$
(a) Valium (iv) Tranquilizer
(b) Morphine (iii) Analgesisc
(c) Norethindrone (i) Antifertility drug
(d) Vitamin B12 (ii) Pernicious anemia
Q. 2 (1)
Q. 3 (3)
(A) Antifertility drug \rightarrow (iii) Nor ethindrone
(B) Antibiotic \rightarrow (iv) Salvarsan
(C) Tranquilizer \rightarrow (i) Meprobamate
(D) Artificial sweetener \rightarrow (ii) Alitame

A-iii, B-iv, C-i, D-ii
Q. 4 (1)
(a) Antacid : Cimetidine
(b) Artifical Sweetener : Alitame
(c) Antifertility : Novestrol
(d) Tranquilizers : Valium
Q. 5 (2)

Artificial sweetner : Sucralose
Antiseptic: Bithional
Preservative: Sodium Benzoate
Glyceryl ester of stearic acid : Synthetic detergent

Q. 6 (4)

The structure of Tyrosine amino acid is

Q. 7 (3)

Some durg do not bind to the Enzyme's active site. These bind to a different site of enzyme which called allosteric site. This binding of inhibitor at allosteric site changes the shape of the active site in such a way that substrate can not recognise it. Such inhibitor is known as Non-competitive inhibitor.

Q. 8
Q. 9 (1)
Q. 10 (3)
Q. 11 (4)
Q. 12 (2)
Q. 13 (3)
Q. 14 (4)
Q. 15 (2)

